Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 49.022
1.
Int J Biol Sci ; 20(7): 2440-2453, 2024.
Article En | MEDLINE | ID: mdl-38725860

Glioblastoma is the prevailing and highly malignant form of primary brain neoplasm with poor prognosis. Exosomes derived from glioblastoma cells act a vital role in malignant progression via regulating tumor microenvironment (TME), exosomal tetraspanin protein family members (TSPANs) are important actors of cell communication in TME. Among all the TSPANs, TSPAN6 exhibited predominantly higher expression levels in comparison to normal tissues. Meanwhile, glioblastoma patients with high level of TSPAN6 had shorter overall survival compared with low level of TSPAN6. Furthermore, TSPAN6 promoted the malignant progression of glioblastoma via promoting the proliferation and metastatic potential of glioblastoma cells. More interestingly, TSPAN6 overexpression in glioblastoma cells promoted the migration of vascular endothelial cell, and exosome secretion inhibitor reversed the migrative ability of vascular endothelial cells enhanced by TSPAN6 overexpressing glioblastoma cells, indicating that TSPAN6 might reinforce angiogenesis via exosomes in TME. Mechanistically, TSPAN6 enhanced the malignant progression of glioblastoma by interacting with CDK5RAP3 and regulating STAT3 signaling pathway. In addition, TSPAN6 overexpression in glioblastoma cells enhanced angiogenesis via regulating TME and STAT3 signaling pathway. Collectively, TSPAN6 has the potential to serve as both a therapeutic target and a prognostic biomarker for the treatment of glioblastoma.


Glioblastoma , STAT3 Transcription Factor , Signal Transduction , Tetraspanins , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Humans , STAT3 Transcription Factor/metabolism , Tetraspanins/metabolism , Tetraspanins/genetics , Cell Line, Tumor , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Animals , Cell Proliferation/genetics , Exosomes/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Movement/genetics , Disease Progression , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mice
2.
Cardiovasc Diabetol ; 23(1): 164, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724987

Dynamin-related protein 1 (Drp1) is a crucial regulator of mitochondrial dynamics, the overactivation of which can lead to cardiovascular disease. Multiple distinct posttranscriptional modifications of Drp1 have been reported, among which S-nitrosylation was recently introduced. However, the detailed regulatory mechanism of S-nitrosylation of Drp1 (SNO-Drp1) in cardiac microvascular dysfunction in diabetes remains elusive. The present study revealed that mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was consistently upregulated in diabetic cardiomyopathy (DCM) and promoted SNO-Drp1 in cardiac microvascular endothelial cells (CMECs), which in turn led to mitochondrial dysfunction and cardiac microvascular disorder. Further studies confirmed that MAP4K4 promoted SNO-Drp1 at human C644 (mouse C650) by inhibiting glutathione peroxidase 4 (GPX4) expression, through which MAP4K4 stimulated endothelial ferroptosis in diabetes. In contrast, inhibition of MAP4K4 via DMX-5804 significantly reduced endothelial ferroptosis, alleviated cardiac microvascular dysfunction and improved cardiac dysfunction in db/db mice by reducing SNO-Drp1. In parallel, the C650A mutation in mice abolished SNO-Drp1 and the role of Drp1 in promoting cardiac microvascular disorder and cardiac dysfunction. In conclusion, our findings demonstrate that MAP4K4 plays an important role in endothelial dysfunction in DCM and reveal that SNO-Drp1 and ferroptosis activation may act as downstream targets, representing potential therapeutic targets for DCM.


Diabetic Cardiomyopathies , Dynamins , Endothelial Cells , Mice, Inbred C57BL , Signal Transduction , Animals , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/enzymology , Diabetic Cardiomyopathies/etiology , Humans , Dynamins/metabolism , Dynamins/genetics , Male , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Cells/enzymology , Endothelial Cells/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Ferroptosis/drug effects , Disease Models, Animal , Cells, Cultured , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondria, Heart/enzymology , Mice , Protein Processing, Post-Translational , Coronary Circulation , Intracellular Signaling Peptides and Proteins
3.
Cells ; 13(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38727307

Tumor necrosis factor-α-induced protein 8-like 3 (TNFAIP8L3 or TIPE3) functions as a transfer protein for lipid second messengers. TIPE3 is highly upregulated in several human cancers and has been established to significantly promote tumor cell proliferation, migration, and invasion and inhibit the apoptosis of cancer cells. Thus, inhibiting the function of TIPE3 is expected to be an effective strategy against cancer. The advancement of artificial intelligence (AI)-driven drug development has recently invigorated research in anti-cancer drug development. In this work, we incorporated DFCNN, Autodock Vina docking, DeepBindBC, MD, and metadynamics to efficiently identify inhibitors of TIPE3 from a ZINC compound dataset. Six potential candidates were selected for further experimental study to validate their anti-tumor activity. Among these, three small-molecule compounds (K784-8160, E745-0011, and 7238-1516) showed significant anti-tumor activity in vitro, leading to reduced tumor cell viability, proliferation, and migration and enhanced apoptotic tumor cell death. Notably, E745-0011 and 7238-1516 exhibited selective cytotoxicity toward tumor cells with high TIPE3 expression while having little or no effect on normal human cells or tumor cells with low TIPE3 expression. A molecular docking analysis further supported their interactions with TIPE3, highlighting hydrophobic interactions and their shared interaction residues and offering insights for designing more effective inhibitors. Taken together, this work demonstrates the feasibility of incorporating deep learning and MD simulations in virtual drug screening and provides inhibitors with significant potential for anti-cancer drug development against TIPE3-.


Cell Proliferation , Deep Learning , Intracellular Signaling Peptides and Proteins , Molecular Docking Simulation , Humans , Cell Proliferation/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Cell Line, Tumor , Cell Movement/drug effects , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology
4.
Mol Cancer ; 23(1): 97, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730427

DLL3 acts as an inhibitory ligand that downregulates Notch signaling and is upregulated by ASCL1, a transcription factor prevalent in the small-cell lung cancer (SCLC) subtype SCLC-A. Currently, the therapeutic strategies targeting DLL3 are varied, including antibody-drug conjugates (ADCs), bispecific T-cell engagers (BiTEs), and chimeric antigen receptor (CAR) T-cell therapies. Although rovalpituzumab tesirine (Rova-T) showed promise in a phase II study, it failed to produce favorable results in subsequent phase III trials, leading to the cessation of its development. Conversely, DLL3-targeted BiTEs have garnered significant clinical interest. Tarlatamab, for instance, demonstrated enhanced response rates and progression-free survival compared to the standard of care in a phase II trial; its biologics license application (BLA) is currently under US Food and Drug Administration (FDA) review. Numerous ongoing phase III studies aim to further evaluate tarlatamab's clinical efficacy, alongside the development of novel DLL3-targeted T-cell engagers, both bispecific and trispecific. CAR-T cell therapies targeting DLL3 have recently emerged and are undergoing various preclinical and early-phase clinical studies. Additionally, preclinical studies have shown promising efficacy for DLL3-targeted radiotherapy, which employs ß-particle-emitting therapeutic radioisotopes conjugated to DLL3-targeting antibodies. DLL3-targeted therapies hold substantial potential for SCLC management. Future clinical trials will be crucial for comparing treatment outcomes among various approaches and exploring combination therapies to improve patient survival outcomes.


Immunoconjugates , Intracellular Signaling Peptides and Proteins , Lung Neoplasms , Radioimmunotherapy , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/therapy , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/radiotherapy , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Radioimmunotherapy/methods , Intracellular Signaling Peptides and Proteins/metabolism , Animals , Membrane Proteins/metabolism , Immunotherapy/methods , Precision Medicine , Molecular Targeted Therapy
5.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731834

Tripartite motif (TRIM) proteins are a multifunctional E3 ubiquitin ligase family that participates in various cellular processes. Recent studies have shown that TRIM proteins play important roles in regulating host-virus interactions through specific pathways, but their involvement in response to rabies virus (RABV) infection remains poorly understood. Here, we identified that several TRIM proteins are upregulated in mouse neuroblastoma cells (NA) after infection with the rabies virus using RNA-seq sequencing. Among them, TRIM44 was found to regulate RABV replication. This is supported by the observations that downregulation of TRIM44 inhibits RABV replication, while overexpression of TRIM44 promotes RABV replication. Mechanistically, TRIM44-induced RABV replication is brought about by activating autophagy, as inhibition of autophagy with 3-MA attenuates TRIM44-induced RABV replication. Additionally, we found that inhibition of autophagy with rapamycin reverses the TRIM44-knockdown-induced decrease in LC3B expression and autophagosome formation as well as RABV replication. The results suggest that TRIM44 promotes RABV replication by an autophagy-dependent mechanism. Our work identifies TRIM44 as a key host factor for RABV replication, and targeting TRIM44 expression may represent an effective therapeutic strategy.


Autophagy , Rabies virus , Tripartite Motif Proteins , Virus Replication , Autophagy/genetics , Animals , Mice , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Rabies virus/physiology , Rabies virus/genetics , Cell Line, Tumor , Humans , Rabies/virology , Rabies/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Host-Pathogen Interactions
6.
Arch Dermatol Res ; 316(5): 156, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734816

Atopic dermatitis (AD) is an inflammatory skin disease with intense pruritus, and chronic skin colonization by Staphylococcus aureus. To understand the inflammatory status in AD, we investigated the inflammasome complex, that activates ASC (Apoptosis-associated speck-like protein containing a CARD), caspase-1 and GSDMD (gasdermin-D), and production of IL-1ß and IL-18. We aimed to evaluate the expression of the inflammasome pathway in the skin of adults with AD. Thirty patients with moderate to severe AD and 20 healthy controls were enrolled in the study. We performed the analysis of the inflammasome components NLRP1, NLRP3, AIM-2, IL-1ß, IL-18, Caspase-1, ASC, GSDMD, and CD68 expression (macrophage marker) by immunohistochemistry and immunofluorescence. The main findings included increased expression of NLRP3, NLRP1 and AIM-2 at dermal level of severe AD; augmented IL-18 and IL-1ß expression at epidermis of moderate and severe patients, and in the dermis of severe AD; augmented expression of ASC, caspase-1 and GSDMD in both epidermis and dermis of moderate and severe AD. We detected positive correlation between caspase-1, GSDMD and IL-1ß (epidermis) and caspase-1 (dermis) and AD severity; NLRP3, AIM-2 and IL-1ß, and NLRP3 with IL-18 in the epidermis; ASC, GSDMD and IL-1ß, and NLRP3, AIM-2, caspase-1, and IL-18 in the dermis. We also evidenced the presence of CD68+ macrophages secreting GSDMD, ASC and IL-1ß in moderate and severe AD. Cutaneous macrophages, early detected in moderate AD, have its role in the disease inflammatory mechanisms. Our study indicates a canonical activation pathway of inflammasomes, reinforced by the chronic status of inflammation in AD. The analysis of the inflammasome complex evidenced an imbalance in its regulation, with increased expression of the evaluated components, which is remarkably in severe AD, emphasizing its relevance as potential disease biomarkers and targets for immunomodulatory interventions.


CARD Signaling Adaptor Proteins , Caspase 1 , Dermatitis, Atopic , Inflammasomes , Interleukin-18 , Interleukin-1beta , Intracellular Signaling Peptides and Proteins , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Humans , Inflammasomes/metabolism , Inflammasomes/immunology , CARD Signaling Adaptor Proteins/metabolism , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Macrophages/metabolism , Macrophages/immunology , Interleukin-1beta/metabolism , Male , Female , Intracellular Signaling Peptides and Proteins/metabolism , Phosphate-Binding Proteins/metabolism , Adult , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-18/metabolism , Caspase 1/metabolism , Skin/pathology , Skin/immunology , Skin/metabolism , Severity of Illness Index , Middle Aged , Antigens, Differentiation, Myelomonocytic/metabolism , Young Adult , Apoptosis Regulatory Proteins/metabolism , Antigens, CD/metabolism , NLR Proteins/metabolism , Case-Control Studies , Epidermis/immunology , Epidermis/metabolism , Epidermis/pathology , Gasdermins , CD68 Molecule , DNA-Binding Proteins
7.
Klin Onkol ; 38(2): 95-101, 2024.
Article En | MEDLINE | ID: mdl-38697817

BACKGROUND: The N-myc downstream-regulated gene 1 (NDRG1) has been discovered as a significant gene in the progression of cancers. However, the regulatory mechanism of NDRG1 remained obscure in prostate cancer (PCa). METHODS: The miR-96-5p and NDRG1 expression levels were evaluated in PCa cell lines, and prostate tissues, and validated in public databases by real-time polymerase chain reaction, western blot analysis, and immunohistochemistry. The function of miR-96-5p and NDRG1 were investigated by scratch assay and transwell assays in vitro, and mouse xenograft assay in vivo. The candidate pathway regulated by NDRG1 was conducted by the next-generation gene sequencing technique. Immunofluorescence and luciferase assays were used to detect the relation between miR-96-5p, NDRG1, and NF-kB pathway. RESULTS: Overexpressing NDRG1 suppresses the migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro, and inhibits metastasis in vivo. Moreover, miR-96-5p contributes to NDRG1 deficiency and promotes PCa cell migration and invasion. Furthermore, NDRG1 loss activates the NF-kB pathway, which stimulates p65 and IKBa phosphorylation and induces EMT in PCa. CONCLUSIONS: MiR-96-5p promotes the migration and invasion of PCa by targeting NDRG1 and regulating the NF-kB pathway.


Cell Cycle Proteins , Intracellular Signaling Peptides and Proteins , MicroRNAs , NF-kappa B , Neoplasm Invasiveness , Prostatic Neoplasms , MicroRNAs/genetics , Humans , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , NF-kappa B/metabolism , Animals , Cell Line, Tumor , Mice , Epithelial-Mesenchymal Transition , Cell Movement , Gene Expression Regulation, Neoplastic
8.
Commun Biol ; 7(1): 543, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714795

The Wnt-planar cell polarity (Wnt-PCP) pathway is crucial in establishing cell polarity during development and tissue homoeostasis. This pathway is found to be dysregulated in many pathological conditions, including cancer and autoimmune disorders. The central event in Wnt-PCP pathway is the activation of Weak-similarity guanine nucleotide exchange factor (WGEF) by the adapter protein Dishevelled (Dvl). The PDZ domain of Dishevelled2 (Dvl2PDZ) binds and activates WGEF by releasing it from its autoinhibitory state. However, the actual Dvl2PDZ binding site of WGEF and the consequent activation mechanism of the GEF have remained elusive. Using biochemical and molecular dynamics studies, we show that a unique "internal-PDZ binding motif" (IPM) of WGEF mediates the WGEF-Dvl2PDZ interaction to activate the GEF. The residues at P2, P0, P-2 and P-3 positions of IPM play an important role in stabilizing the WGEFpep-Dvl2PDZ interaction. Furthermore, MD simulations of modelled Dvl2PDZ-WGEFIPM peptide complexes suggest that WGEF-Dvl2PDZ interaction may differ from the reported Dvl2PDZ-IPM interactions. Additionally, the apo structure of human Dvl2PDZ shows conformational dynamics different from its IPM peptide bound state, suggesting an induced fit mechanism for the Dvl2PDZ-peptide interaction. The current study provides a model for Dvl2 induced activation of WGEF.


Dishevelled Proteins , Guanine Nucleotide Exchange Factors , Molecular Dynamics Simulation , Protein Binding , Dishevelled Proteins/metabolism , Dishevelled Proteins/chemistry , Dishevelled Proteins/genetics , Humans , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/genetics , PDZ Domains , Amino Acid Motifs , Wnt Signaling Pathway , Peptides/metabolism , Peptides/chemistry , Binding Sites , Microfilament Proteins , Intracellular Signaling Peptides and Proteins
9.
Genes Chromosomes Cancer ; 63(5): e23244, 2024 May.
Article En | MEDLINE | ID: mdl-38747338

We describe a case of a pleomorphic adenoma (PA) arising from the para-tracheal accessory salivary gland in a 44-year-old male harboring a novel WWTR1::NCOA2 gene fusion. To our knowledge, this novel gene fusion has not been described previously in salivary gland tumors. The patient presented with hoarseness of voice. The radiological exam revealed a mass in the upper third of the trachea involving the larynx. Histologically, the tumor consisted of bland-looking monocellular eosinophilic epithelial cells arranged in cords and sheets separated by thin fibrous stroma, focally forming a pseudo-tubular pattern. In immunohistochemistry, the tumor cells demonstrated positivity for CK7, PS100, SOX10, and HMGA2; and negativity for CK5/6, p40 p63, and PLAG1. In addition, the clustering analysis clearly demonstrates a clustering of tumors within the PA group. In addition to reporting this novel fusion in the PA spectrum, we discuss the relevant differential diagnoses and briefly review of NCOA2 and WWTR1 gene functions in normal and neoplastic contexts.


HMGA2 Protein , Nuclear Receptor Coactivator 2 , Trans-Activators , Humans , Male , Nuclear Receptor Coactivator 2/genetics , Nuclear Receptor Coactivator 2/metabolism , Adult , HMGA2 Protein/genetics , HMGA2 Protein/metabolism , Trans-Activators/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/pathology , Salivary Gland Neoplasms/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Oncogene Proteins, Fusion/genetics , Myoepithelioma/genetics , Myoepithelioma/pathology , Myoepithelioma/metabolism
10.
Med Oncol ; 41(6): 151, 2024 May 14.
Article En | MEDLINE | ID: mdl-38743149

Prostate cancer (PCa) is the second most common cancer and the fifth leading cause of cancer-related death among men. A comprehensive understanding of PCa progression is crucial for the development of innovative therapeutic strategies for its treatment. While WDR1 (WD-repeat domain 1) serves as a significant cofactor of actin-depolymerizing factor/cofilin, its role in PCa progression remains unknown. In this study, we demonstrated that knockdown of WDR1 in various PCa cells substantially inhibited cell proliferation, migration, and invasion in vitro, as confirmed at both the cellular and molecular levels. Moreover, the overexpression of WDR1 promoted PCa cell proliferation and metastasis in vitro. Mechanistically, we showed that the application of lithium chloride, an activator of the Wnt/ß-Catenin signaling pathway, restored the suppressive effects of WDR1 deficiency on cell proliferation and migration in PCa cells. Our findings suggest that the WDR1-ß-Catenin axis functions as an activator of the malignant phenotype and represents a promising therapeutic target for PCa treatment.


Cell Movement , Cell Proliferation , Disease Progression , Prostatic Neoplasms , Wnt Signaling Pathway , Humans , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Wnt Signaling Pathway/physiology , Cell Movement/genetics , Cell Line, Tumor , beta Catenin/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics
11.
Cell Death Dis ; 15(5): 335, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744853

PTENα/ß, two variants of PTEN, play a key role in promoting tumor growth by interacting with WDR5 through their N-terminal extensions (NTEs). This interaction facilitates the recruitment of the SET1/MLL methyltransferase complex, resulting in histone H3K4 trimethylation and upregulation of oncogenes such as NOTCH3, which in turn promotes tumor growth. However, the molecular mechanism underlying this interaction has remained elusive. In this study, we determined the first crystal structure of PTENα-NTE in complex with WDR5, which reveals that PTENα utilizes a unique binding motif of a sequence SSSRRSS found in the NTE domain of PTENα/ß to specifically bind to the WIN site of WDR5. Disruption of this interaction significantly impedes cell proliferation and tumor growth, highlighting the potential of the WIN site inhibitors of WDR5 as a way of therapeutic intervention of the PTENα/ß associated cancers. These findings not only shed light on the important role of the PTENα/ß-WDR5 interaction in carcinogenesis, but also present a promising avenue for developing cancer treatments that target this pathway.


Intracellular Signaling Peptides and Proteins , PTEN Phosphohydrolase , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/chemistry , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/chemistry , Animals , Mice , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Cell Proliferation/genetics , Disease Progression , Protein Binding , Cell Line, Tumor , Mice, Nude , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/chemistry , Protein Domains , Amino Acid Motifs
12.
J Cell Biol ; 223(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38728007

Activation of PINK1 and Parkin in response to mitochondrial damage initiates a response that includes phosphorylation of RAB7A at Ser72. Rubicon is a RAB7A binding negative regulator of autophagy. The structure of the Rubicon:RAB7A complex suggests that phosphorylation of RAB7A at Ser72 would block Rubicon binding. Indeed, in vitro phosphorylation of RAB7A by TBK1 abrogates Rubicon:RAB7A binding. Pacer, a positive regulator of autophagy, has an RH domain with a basic triad predicted to bind an introduced phosphate. Consistent with this, Pacer-RH binds to phosho-RAB7A but not to unphosphorylated RAB7A. In cells, mitochondrial depolarization reduces Rubicon:RAB7A colocalization whilst recruiting Pacer to phospho-RAB7A-positive puncta. Pacer knockout reduces Parkin mitophagy with little effect on bulk autophagy or Parkin-independent mitophagy. Rescue of Parkin-dependent mitophagy requires the intact pRAB7A phosphate-binding basic triad of Pacer. Together these structural and functional data support a model in which the TBK1-dependent phosphorylation of RAB7A serves as a switch, promoting mitophagy by relieving Rubicon inhibition and favoring Pacer activation.


Mitophagy , Protein Serine-Threonine Kinases , Ubiquitin-Protein Ligases , rab GTP-Binding Proteins , rab7 GTP-Binding Proteins , Mitophagy/genetics , Humans , Phosphorylation , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , HeLa Cells , Protein Binding , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Mitochondria/metabolism , Mitochondria/genetics , HEK293 Cells
13.
Nat Commun ; 15(1): 4025, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740804

Intracellular membranes composing organelles of eukaryotes include membrane proteins playing crucial roles in physiological functions. However, a comprehensive understanding of the cellular responses triggered by intracellular membrane-focused oxidative stress remains elusive. Herein, we report an amphiphilic photocatalyst localised in intracellular membranes to damage membrane proteins oxidatively, resulting in non-canonical pyroptosis. Our developed photocatalysis generates hydroxyl radicals and hydrogen peroxides via water oxidation, which is accelerated under hypoxia. Single-molecule magnetic tweezers reveal that photocatalysis-induced oxidation markedly destabilised membrane protein folding. In cell environment, label-free quantification reveals that oxidative damage occurs primarily in membrane proteins related to protein quality control, thereby aggravating mitochondrial and endoplasmic reticulum stress and inducing lytic cell death. Notably, the photocatalysis activates non-canonical inflammasome caspases, resulting in gasdermin D cleavage to its pore-forming fragment and subsequent pyroptosis. These findings suggest that the oxidation of intracellular membrane proteins triggers non-canonical pyroptosis.


Inflammasomes , Membrane Proteins , Oxidation-Reduction , Pyroptosis , Humans , Inflammasomes/metabolism , Membrane Proteins/metabolism , Oxidative Stress , Catalysis , Endoplasmic Reticulum Stress , Hydrogen Peroxide/metabolism , Phosphate-Binding Proteins/metabolism , Hydroxyl Radical/metabolism , Mitochondria/metabolism , Intracellular Membranes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Animals , Photochemical Processes , Protein Folding , Caspases/metabolism , Gasdermins
14.
BMC Cancer ; 24(1): 587, 2024 May 14.
Article En | MEDLINE | ID: mdl-38741073

YAP and TAZ, the Hippo pathway terminal transcriptional activators, are frequently upregulated in cancers. In tumor cells, they have been mainly associated with increased tumorigenesis controlling different aspects from cell cycle regulation, stemness, or resistance to chemotherapies. In fewer cases, they have also been shown to oppose cancer progression, including by promoting cell death through the action of the p73/YAP transcriptional complex, in particular after chemotherapeutic drug exposure. Using HCT116 cells, we show here that oxaliplatin treatment led to core Hippo pathway down-regulation and nuclear accumulation of TAZ. We further show that TAZ was required for the increased sensitivity of HCT116 cells to oxaliplatin, an effect that appeared independent of p73, but which required the nuclear relocalization of TAZ. Accordingly, Verteporfin and CA3, two drugs affecting the activity of YAP and TAZ, showed antagonistic effects with oxaliplatin in co-treatments. Importantly, using several colorectal cell lines, we show that the sensitizing action of TAZ to oxaliplatin is dependent on the p53 status of the cells. Our results support thus an early action of TAZ to sensitize cells to oxaliplatin, consistent with a model in which nuclear TAZ in the context of DNA damage and p53 activity pushes cells towards apoptosis.


Antineoplastic Agents , Colonic Neoplasms , Hippo Signaling Pathway , Organoplatinum Compounds , Oxaliplatin , Protein Serine-Threonine Kinases , Signal Transduction , Trans-Activators , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Tumor Suppressor Protein p53 , Humans , Oxaliplatin/pharmacology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , HCT116 Cells , Signal Transduction/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/therapeutic use , Antineoplastic Agents/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Drug Resistance, Neoplasm/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Verteporfin/pharmacology , Verteporfin/therapeutic use , Cell Line, Tumor , Tumor Protein p73/metabolism , Tumor Protein p73/genetics , YAP-Signaling Proteins/metabolism , Porphyrins/pharmacology , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic/drug effects , Apoptosis/drug effects
15.
Front Immunol ; 15: 1248907, 2024.
Article En | MEDLINE | ID: mdl-38720893

Introduction: Sepsis remains a major cause of death in Intensive Care Units. Sepsis is a life-threatening multi-organ dysfunction caused by a dysregulated systemic inflammatory response. Pattern recognition receptors, such as TLRs and NLRs contribute to innate immune responses. Upon activation, some NLRs form multimeric protein complexes in the cytoplasm termed "inflammasomes" which induce gasdermin d-mediated pyroptotic cell death and the release of mature forms of IL-1ß and IL-18. The NLRP6 inflammasome is documented to be both a positive and a negative regulator of host defense in distinct infectious diseases. However, the role of NLRP6 in polymicrobial sepsis remains elusive. Methods: We have used NLRP6 KO mice and human septic spleen samples to examine the role of NLRP6 in host defense in sepsis. Results: NLRP6 KO mice display enhanced survival, reduced bacterial burden in the organs, and reduced cytokine/chemokine production. Co-housed WT and KO mice following sepsis show decreased bacterial burden in the KO mice as observed in singly housed groups. NLRP6 is upregulated in CD3, CD4, and CD8 cells of septic patients and septic mice. The KO mice showed a higher number of CD3, CD4, and CD8 positive T cell subsets and reduced T cell death in the spleen following sepsis. Furthermore, administration of recombinant IL-18, but not IL-1ß, elicited excessive inflammation and reversed the survival advantages observed in NLRP6 KO mice. Conclusion: These results unveil NLRP6 as a negative regulator of host defense during sepsis and offer novel insights for the development of new treatment strategies for sepsis.


Mice, Knockout , Sepsis , Animals , Sepsis/immunology , Sepsis/microbiology , Humans , Mice , Inflammasomes/metabolism , Inflammasomes/immunology , Mice, Inbred C57BL , Male , Cytokines/metabolism , Female , Immunity, Innate , Disease Models, Animal , Spleen/immunology , Receptors, Cell Surface , Intracellular Signaling Peptides and Proteins
16.
Elife ; 122024 May 02.
Article En | MEDLINE | ID: mdl-38695862

Here, we investigated the mechanisms by which aging-related reductions of the levels of Numb in skeletal muscle fibers contribute to loss of muscle strength and power, two critical features of sarcopenia. Numb is an adaptor protein best known for its critical roles in development, including asymmetric cell division, cell-type specification, and termination of intracellular signaling. Numb expression is reduced in old humans and mice. We previously showed that, in mouse skeletal muscle fibers, Numb is localized to sarcomeres where it is concentrated near triads; conditional inactivation of Numb and a closely related protein Numb-like (Numbl) in mouse myofibers caused weakness, disorganization of sarcomeres, and smaller mitochondria with impaired function. Here, we found that a single knockout of Numb in myofibers causes reduction in tetanic force comparable to a double Numb, Numbl knockout. We found by proteomics analysis of protein complexes isolated from C2C12 myotubes by immunoprecipitation using antibodies against Numb that Septin 7 is a potential Numb-binding partner. Septin 7 is a member of the family of GTP-binding proteins that organize into filaments, sheets, and rings, and is considered part of the cytoskeleton. Immunofluorescence evaluation revealed a partial overlap of staining for Numb and Septin 7 in myofibers. Conditional, inducible knockouts of Numb led to disorganization of Septin 7 staining in myofibers. These findings indicate that Septin 7 is a Numb-binding partner and suggest that interactions between Numb and Septin 7 are critical for structural organization of the sarcomere and muscle contractile function.


Intracellular Signaling Peptides and Proteins , Membrane Proteins , Mice, Knockout , Muscle Contraction , Nerve Tissue Proteins , Sarcomeres , Septins , Animals , Septins/metabolism , Septins/genetics , Sarcomeres/metabolism , Mice , Muscle Contraction/physiology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Protein Binding , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/physiology
17.
Commun Biol ; 7(1): 533, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710747

Insect wing development is a fascinating and intricate process that involves the regulation of wing size through cell proliferation and apoptosis. In this study, we find that Ter94, an AAA-ATPase, is essential for proper wing size dependently on its ATPase activity. Loss of Ter94 enables the suppression of Hippo target genes. When Ter94 is depleted, it results in reduced wing size and increased apoptosis, which can be rescued by inhibiting the Hippo pathway. Biochemical experiments reveal that Ter94 reciprocally binds to Mer, a critical upstream component of the Hippo pathway, and disrupts its interaction with Ex and Kib. This disruption prevents the formation of the Ex-Mer-Kib complex, ultimately leading to the inactivation of the Hippo pathway and promoting proper wing development. Finally, we show that hVCP, the human homolog of Ter94, is able to substitute for Ter94 in modulating Drosophila wing size, underscoring their functional conservation. In conclusion, Ter94 plays a positive role in regulating wing size by interfering with the Ex-Mer-Kib complex, which results in the suppression of the Hippo pathway.


Drosophila Proteins , Drosophila melanogaster , Membrane Proteins , Protein Serine-Threonine Kinases , Signal Transduction , Tumor Suppressor Proteins , Wings, Animal , Animals , Wings, Animal/growth & development , Wings, Animal/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Apoptosis , Neurofibromin 2/metabolism , Neurofibromin 2/genetics , Gene Expression Regulation, Developmental , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Drosophila/genetics , Drosophila/growth & development , Drosophila/metabolism
19.
Cell Biochem Funct ; 42(4): e4028, 2024 Jun.
Article En | MEDLINE | ID: mdl-38715125

Niemann-Pick disease (NPD) is another type of metabolic disorder that is classified as lysosomal storage diseases (LSDs). The main cause of the disease is mutation in the SMPD1 (type A and B) or NPC1 or NPC2 (type C) genes, which lead to the accumulation of lipid substrates in the lysosomes of the liver, brain, spleen, lung, and bone marrow cells. This is followed by multiple cell damage, dysfunction of lysosomes, and finally dysfunction of body organs. So far, about 346, 575, and 30 mutations have been reported in SMPD1, NPC1, and NPC2 genes, respectively. Depending on the type of mutation and the clinical symptoms of the disease, the treatment will be different. The general aim of the current study is to review the clinical and molecular characteristics of patients with NPD and study various treatment methods for this disease with a focus on gene therapy approaches.


Genetic Therapy , Mutation , Niemann-Pick C1 Protein , Humans , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Niemann-Pick Diseases/genetics , Niemann-Pick Diseases/metabolism , Niemann-Pick Diseases/therapy , Niemann-Pick Diseases/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Niemann-Pick Disease, Type C/therapy , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/pathology , Animals
20.
Respir Res ; 25(1): 193, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702733

BACKGROUND: Influenza A virus (IAV) infection is a significant risk factor for respiratory diseases, but the host defense mechanisms against IAV remain to be defined. Immune regulators such as surfactant protein A (SP-A) and Toll-interacting protein (Tollip) have been shown to be involved in IAV infection, but whether SP-A and Tollip cooperate in more effective host defense against IAV infection has not been investigated. METHODS: Wild-type (WT), Tollip knockout (KO), SP-A KO, and Tollip/SP-A double KO (dKO) mice were infected with IAV for four days. Lung macrophages were isolated for bulk RNA sequencing. Precision-cut lung slices (PCLS) from WT and dKO mice were pre-treated with SP-A and then infected with IAV for 48 h. RESULTS: Viral load was significantly increased in bronchoalveolar lavage (BAL) fluid of dKO mice compared to all other strains of mice. dKO mice had significantly less recruitment of neutrophils into the lung compared to Tollip KO mice. SP-A treatment of PCLS enhanced expression of TNF and reduced viral load in dKO mouse lung tissue. Pathway analysis of bulk RNA sequencing data suggests that macrophages from IAV-infected dKO mice reduced expression of genes involved in neutrophil recruitment, IL-17 signaling, and Toll-like receptor signaling. CONCLUSIONS: Our data suggests that both Tollip and SP-A are essential for the lung to exert more effective innate defense against IAV infection.


Influenza A virus , Mice, Inbred C57BL , Mice, Knockout , Orthomyxoviridae Infections , Pulmonary Surfactant-Associated Protein A , Animals , Pulmonary Surfactant-Associated Protein A/metabolism , Pulmonary Surfactant-Associated Protein A/genetics , Mice , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/metabolism , Influenza A virus/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Lung/immunology , Lung/metabolism , Lung/virology
...